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Abstract— In this work, an efficient homology guided belief
space planning method for obstacle-cluttered environments is
presented. The proposed planner follows a two-step approach.
First, a h-signature guided rapidly-exploring random tree
(HRRT) algorithm is proposed to provide nominal trajecto-
ries in different homology classes by constructing homology
aware sub-trees in a parallel manner. The HRRT planner is
extended to a h-signature guided RRT* algorithm, where an
inter-homology-class rewire procedure is proposed, increasing
the probability of discovering homology classes in narrow
space/passages. The iLQG-based belief space planning algo-
rithm is then employed to find locally optimal trajectories
minimizing uncertainties in each homology class.

I. INTRODUCTION

In this paper, a homology- and uncertainty-aware trajec-
tory planner, towards providing a global optimal solution
for belief space planning problem by exploring different
homology classes in an obstacle-cluttered environment is
proposed. Given robot free configuration space C f , homotopy
inequivalent trajectories are defined as the set of trajectories
connecting the same start and goal configurations that cannot
continuously deform into one another [1]. In an obstacle-
scattered partially observable environment, the state of the
robot can be described by the conditional probability distri-
bution of the state [2], i.e., belief, and the planning algorithms
are designed to generate optimal policies in belief space such
that the motion and sensing uncertainties are minimized. In
such environment, the awareness of homotopy classes of
the trajectories can benefit the belief propagation and robot
decision making from a global perspective, enhancing the
safety and optimality of the planning performance. Current
belief space planning methods like [3]–[6] produce locally
optimized trajectories in belief space within the same homo-
topy class, where the trajectories generated are not homo-
topy aware. This paper presents a efficient belief planning
strategy employing the awareness of the homotopy class,
towards generating global optimal solutions to the partially
observable Markov decision process problem. In practice,
determining homotopy inequivalent trajectories is compu-
tationally intractable, in most literature, a computational
efficient alternative, homology, is used for path planning
with topological constraints [7]–[10]. In a 2D plane, two
trajectories f1 and f2 connecting the same start and goal
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configurations are of the same homology type if and only if
f1t− f2 forms the complete boundary of a 2D manifold in
C f without containing any obstacle [1], [11].

The belief space planning method proposed follows a
two step approach. First, a homology class guided rapidly-
exploring random tree (HRRT) planner is presented in
this paper. The HRRT planner finds homology inequivalent
nominal trajectories using the homology class guided sub-
trees which explore different homology classes in a parallel
manner. This planner is then extended into a homology class
guided RRT∗(HRRT∗) planner, in which a proposed inter-
homology-class rewire procedure is to further improve the
probability of discovering new homology classes in nar-
row passages/space. The iterative Linear Quadratic Gaussian
(iLQG) based belief space planner [5] is then employed
to locally optimize the nominal trajectories found by the
HRRT/HRRT* planner in belief space.

The rest of this paper is organized as follows. Re-
lated work is presented in Section II. In Section III, the
homology-guided nominal trajectory generation using the
HRRT/HRRT* planner is presented. The iLQG based belief
space planning is reviewed in Section IV. The experi-
mental examples, including experimental comparison of the
HRRT/HRRT* planner with other homology-aware planners
from the literature are presented in Section V, followed by
conclusions in Section VI.

II. RELATED WORKS

In the context of motion planning with homotopy class
constraint, recent studies have focused on finding the opti-
mal/shortest paths in different homotopy types using sample
based or search based methods. In [7], [8], a h-signature aug-
mented graph is constructed by discretizing the environment,
and the shortest path is searched via graph search algorithms
such as Dijkstra’s or A*. The h-signature is proposed as
a homotopy invariant and computed using Cauchy integral
theorem. In [12], [13], the h-signature is defined as the
“reduced words” which is constructed by tracking the direc-
tion and the times an inquiry trajectory intersects the “rays”
extended from a point defined on each of the obstacles. In
[14], a WA-RRT/RRT* planner is proposed by sampling the
winding angle augmented states in standard the RRT/RRT*
algorithm. In [9], a PI-RRHT* algorithm is proposed to
provide optimal trajectories in different homology classes for
stochastic dynamics, where sample states are augmented with
h-signatures. In [11], the authors propose a Timed-Elastic-
Band approach optimizing trajectories in different homology
classes, where a h-signature based depth-first search over



a exploration graph generated from a discretized Voronoi
diagram or a waypoint sampling strategy, is proposed.

Belief space planning has been extensively studied in
the past decade for solving the partially observable Markov
decision process (POMDP). Platt et al. [3] propose a Linear
quadratic regulation (LQR) approach in belief space where
Gaussian belief state dynamics are employed. Van Den Berg
et al. [5] propose an iLQG based belief space planner which
computes a locally optimal solution to a POMDP problem
with continuous state and action spaces. This method does
not assume maximum likelihood observations. In [15], a
rapidly-exploring random belief tree (RRBT) is proposed to
incrementally construct a tree in belief space. The RRBT
planner is able to explore different homotopy classes and
provide global optimal trajectories, however, the exploration
of the belief tree is not homotopy aware. In [16], a stochastic
extended linear quadratic regulator (SELQR) is proposed and
extended in belief space, which optimizes the approximation
of the cost-to-come and cost-to-go iteratively. This method is
able to find a locally optimized policy in different homotopy
classes in belief space, the trajectory optimized still lacks
homotopy awareness. These methods cannot serve the needs
for certain robotic missions, e.g., exploring space in different
homotopy classes safely for multi-agent systems.

The homology guided belief space planning method pro-
posed in the present paper locally optimizes multiple ho-
mology aware trajectories in a parallel manner by employ-
ing the proposed HRRT/HRRT∗ planner towards provid-
ing global optimal trajectories in belief space. The present
HRRT/HRRT∗ planner is different from the WA-RRT/RRT∗

planner [14] in that our planner explores multiple homology
classes using sub-tree expansions in a parallel manner. The
PI-RRHT∗ planner [9] provides homology guided optimal
trajectories for stochastic dynamics, however, this planner
does not take into account the sensing uncertainty. The
proposed homology guided belief space planner optimizes
trajectories over both motion and sensing uncertainties in
belief space. Additionally, the nominal trajectory generation
procedure is different from the PI-RRHT∗ planner [9]. First,
we present both feasible and optimal homology class explo-
ration strategies for the nominal trajectory generation, while
in [9], only optimal homology class exploration strategy
is proposed. Second, the “rewire” procedure proposed in
the HRRT∗ planner is different from that in the PI-RRHT∗

planner, as the HRRT∗ planner includes an extra inter-
homology-class rewire procedure. Using this procedure, the
present HRRT∗ planner is able to discover new homology
classes and increase the connectivity of the sample nodes in
narrow passages. The performance of the present HRRT∗

planner in comparison to the PI-RRHT∗ planner [9] and
WA-RRT∗ planner [14] in different experimental scenarios
is presented in Section V.

III. HOMOLOGY-GUIDED NOMINAL TRAJECTORY
GENERATION

In this section, the h-signature guided RRT and RRT∗

algorithms are proposed. The h-signature is defined as a

topological invariant for the trajectories within the same
homology class [8], [12], [17], i.e., the h-signature uniquely
identifies the homology class of a given trajectory. The
algorithms proposed aim to find nominal homology inequiv-
alent trajectories parallelly through the expansion of the h-
signature augmented sub-trees. In this paper, the h-signature
is computed in 2D space, as higher dimensional cases can
be computed via 2D projections as proposed in [14].

A. h-signatures and Winding Numbers in 2D

Let the free configuration space C f and obstacles O =
{O1,O2, ...,OM} be subsets of R2. Given a continuous curve
f , the winding number w(pi, f ), i = 1,2, ...,M is used to
describe the number of times the curve winds around a
winding center pi ∈Oi [14], [18], where the winding center
pi can be defined at a point on the obstacle Oi or can
be found through filtration of simplicial complexes [14].
Given a winding center pi, the winding number w(pi, f ) of
a continuous trajectory f (t) = (x(t),y(t)), t ∈ [0,1] in 2D
plane can be computed as [18]:

w(pi, f ) =
1

2π

∫ 1

0

ẏ(t)x(t)− y(t)ẋ(t)
x(t)2 + y(t)2 dt. (1)

In sample based motion planning algorithms, e.g.
RRT/RRT*, trajectories are constructed through connecting
a series of piecewise linear curves { f j} j=1,...,N−1. Let
P0, P1, ..., PN be a series of intersecting points connecting
the piecewise linear curves, and v0, v1, ..., vN be the series
of vectors where vk = Pk − pi, k = 1, ...,N, the winding
number can then be approximated as the sum of the signed
angles of the piecewise linear curves revolve against the
winding center [18]:

w(pi, f ) =
1

2π

N−1

∑
k=1

∫ 1

0

ẏk(t)xk(t)− yk(t)ẋk(t)
xk(t)2 + yk(t)2 dt

=
1

2π
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∑
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By definition, if the winding center resides outside a closed
curve, the winding number is zero. Otherwise, if the winding
center resides inside the closed curve, the winding number
is either 1 if the curve travels counterclockwise, or -1 if the
curve travels clockwise [18]. The winding number can be
used to identify trajectories that are homology inequivalent,
as it provides the orientation of how the curve travels around
the winding center (the obstacle). This heuristic is then
applied to the design of the h-signature.

In this paper, we compute the h-signature as the set of inte-
gers computed from the winding numbers. Specifically, given
winding numbers w = [w(p1, f ), w(p2, f ), ..., w(pM, f )] ∈
RM , the h-signature is computed as:

h = [sgn′(w(p1, f )),sgn′(w(p2, f )), ...,sgn′(w(pM, f ))], (3)



Algorithm 1: h-signature Guided RRT (HRRT) Al-
gorithm

Input : q0: the root configuration, N: the number
of iterations to expand the tree,
{p j} j=1,2,...,M: a series of winding centers

1 V1 ← (q0, 0M), E1 ← /0, T .Append((V1,E1))
2 H.Append(0M), Nh ← 1
3 for i = 1,2, ...,N do
4 qrand ← RandomSample(C f )
5 for all ih = 1, 2, ..., Nh do
6 xnearest ← NearestNeighbor(Tih , qrand)
7 qnew ← Steer(xnearest .q, qrand)
8 if ObstacleFree(xnearest .q, qnew) then
9 w ← xnearest .w +

ComputeWindingNumber(xnearest .q, qnew,
{p j} j=1,2...,M)

10 h∗ ← sgn′(w)
11 T , ih∗ , H, Nh ← SubTreeExtension(ih, T ,

h∗, xnearest , H, Nh)
12 xnew ← (qnew,w), Tih∗ .V ← Tih∗ .V ∪ xnew,
13 Tih∗ .E ← Tih∗ .E ∪ (xnearest , xnew)
14 end
15 end
16 end

Output: Tree T = {(Vih ,Eih)}ih=1,2,...,Nh

where a modified signum function sgn′ is defined as:

sgn′(x) =



−(m−1) if −(m−1)< x <−(m−2)
...

...
−1 if −1 < x < 0
0 if x = 0.
1 if 0 < x < 1
...

...
m−1 if m−2 < x < m−1

(4)

This definition modulates the number of turns the trajectories
wind around the winding centers to m, i.e., the h-signature
computed with modulo of m can only distinguish the trajec-
tories winding up to m−1 times around the winding centers,
similar to the winding number modulo m defined in [14]. We
will use the notation h = sgn′(w) for convenience in the rest
of the paper.

The definition of the h-signature presented in this section
is a numerical version of the definition proposed in [12],
[17], instead of constructing the “words” by tracking how
the trajectories intersects the “rays” extended from a point
on the obstacles, the number of turns and the directions of
the trajectory winds around the winding centers are used as
“intersecting” criteria.

B. h-signature Guided RRT Algorithm

In this section, the proposed h-signature guided Rapidly-
Exploring Random Tree [19] (HRRT) algorithm generating

Algorithm 2: SubTreeExtension
Input : H, ih, T , h∗, xnearest , Nh

1 if h∗ /∈ H then
2 H ← H.Append(h∗)
3 ih∗ ← Nh +1, Nh ← Nh +1
4 Tih∗ ← NewSubTree(T , ih∗ , xnearest )
5 else if h∗ 6= H(ih) then
6 ih∗ ← Find(h∗, H)
7 Tih∗ ← ConnectSubTree(T , ih∗ , xnearest )
8 else
9 ih∗ ← ih

10 end
Output: H, T , Nh, ih∗

feasible trajectories in different homology classes in a paral-
lel manner is presented. The algorithm incrementally grows a
tree by randomly sampling states in the configurations space,
as in the standard RRT algorithm [20]. Two adaptations
are made to construct a homology-aware tree. First, the
vertices and edges of the tree are augmented by winding
numbers [14]. Second, the tree is constructed by growing
the h-signature augmented sub-trees, where each sub-tree
explores a different homology class. During the random
tree expansion, new sub-trees will be constructed based on
existing sub-trees as new homology classes are discovered.

The HRRT algorithm is presented in Algorithm 1. The
tree T is represented by a set of vertices V and edges
E [20]. Similar to [14], the set of vertices V and edges
E are augmented by the winding numbers and projected
to the winding number augmented space W ⊂ RM , with
V ⊆ C f ×W and E ⊆ V ×V . Each vertex x = (q, w) ∈ V
has a state q ∈ C f and a winding number vector w ∈W . The
algorithm takes as input a root configuration q0, the number
of iterations N for tree expansion, and the winding centers
{p j} j=1,2,...,M in the 2D plane or the projected 2D plane for
higher dimensional cases.

The tree T is initialized with the first h-signature guided
sub-tree (V1,E1) in Line 1, where the vertex has the state
of the root node with the h-signature of a zero vector
0M . In Line 2, an array H collecting h-signatures during
the expansion of the sub-trees is also initialized with the
h-signature of the root node, and the size Nh of the h-
signature array is initialized as 1. The main expansion of
the HRRT is presented in Lines 3-16. In Line 4, a random
state qrand is first sampled in configuration space C f . The
algorithm then extends all the sub-trees towards the random
state qrand . For the ih-th sub-tree Tih = (Vih ,Eih), in Line 6,
a nearest neighbor search is first performed and returns the
nearest neighbor xnearest in the sub-tree. A new state qnew
is returned by Steer() function in Line 7. Line 8 checks if
the edge between qnew and xnearest .q is obstacle free, if true,
the algorithm computes the winding number vector w ∈W
given the line segment from xnearest .q to qnew using (2) in
function ComputeWindingNumber(), and the h-signature h∗

using (3), in Lines 9 and 10. In Line 11, a SubTreeExtension()
function is performed, as presented in Algorithm 2, where
three types of procedures are performed given the h-signature



h∗ computed in Line 10. The function takes the input of the
index ih of the sub-tree Tih , the nearest vertex xnearest , the
current tree T , the h-signature h∗, and the h-signature array
H and its size Nh. First, if the h-signature h∗ is not found
in the existing homology classes, a new homology class is
discovered, where the new h-signature h∗ is appended to
H and a new sub-tree Tih∗ = (Vih∗ ,Eih∗ ) is initialized, as
shown in Lines 2-4. In Line 4, the NewSubtree() function
adds and connects the vertex xnearest and all its ancestry
vertices (via parent tracing) to the new sub-tree. If h∗ is
found but does not match the h-signature H(ih) of the nearest
vertex xnearest , the ih∗ -th sub-tree will add and connect the
vertex xnearest and its ancestry vertices until a vertex belongs
to the ih∗ -th sub-tree or the root vertex is found, as in
Lines 6-7. Specifically, the Find() function returns the index
ih∗ of the sub-tree Tih∗ whose signature matches h∗, and
the ConnectSubtree() function connects the vertex xnearest
and all its ancestry vertices (via parent tracing) to the ih∗ -
th sub-tree. Otherwise, h∗ matches the h-signature of the
nearest vertex xnearest , and ih∗ is updated to the index of
the ih-th sub-tree. This function returns the index ih∗ of
the sub-tree for extension of the new vertex, the updated
tree and the h-signature array. Finally, in Lines 12-13, the
new winding number augmented vertex xnew is added to
its designated sub-tree Tih∗ . In each expansion iteration, the
algorithm expands all sub-trees (Vih ,Eih)ih=1,...Nh in a parallel
manner, new homology classes and sub-trees are discovered
through random sampling in the free configuration space as
in standard RRT algorithm.

C. h-signature Guided RRT* Algorithm

The HRRT algorithm can then be extended into h-
signature guided RRT* (HRRT*) algorithm by adding a
rewire procedure every time a new vertex is added to the
sub-trees, as presented in Algorithm 3, in a manner similar
to the original RRT* algorithm proposed in [21].

The HRRT* algorithm is adapted from the Extend proce-
dure of the original RRT* algorithm (Algorithm 4 in [21])
by taking into account h-signatures during tree extension
and rewiring. Specifically, the algorithm first generates a
new state in free configuration space and computes the h-
signature h∗ given the nearest neighbor state, as given in
Lines 4-10. The Near() function used in Line 11 returns the
neighbor vertices Qnear with the same h-signature (h∗) in the
sub-tree within a ball of radius ε(|Vh|). The UpdateMinimum-
CostNeighbor() function in Line 12 then takes the neighbor
vertices Qnear and the new state qnew as input and returns
the vertex xmin with the same h-signature h∗ that leads to a
minimum cost trajectory to the new state qnew. (The readers
are referred to Lines 6-12 of the Extend Algorithm in [21]
for details of this process.) The winding number vector w is
then updated given the line segment from the minimum cost
state xmin.q to qnew, and a new h-signature h∗∗ is calculated
in Lines 13-14. The designated sub-tree Tih∗∗ is then extended
based on the h-signature computed as in Lines 15-16.

The Rewire procedure is performed in Line 17, in a manner
similar to the standard rewire procedure from Algorithm 4

Algorithm 3: h-signature Guided RRT* Algorithm
Input : q0, N, {p j} j=1,2,...,M

1 V1 ← (q0, 0M), E1 ← /0, T .Append((V1,E1))
2 H.Append(0M), Nh ← 1
3 for i = 1,2, ...,N do
4 qrand ← RandomSample(C f )
5 for all ih = 1, 2, ..., Nh do
6 xnearest .q ← NearestNeighbor(Tih , qrand)
7 qnew ← Steer(xnearest .q, qrand)
8 if ObstacleFree(xnearest .q, qnew) then
9 w ← xnearest .w +

ComputeWindingNumber(xnearest .q, qnew,
{p j} j=1,2...,M)

10 h∗ ← sgn′(w)
11 Qnear ← Near(h∗,Tih ,qnew)
12 xmin ←

UpdateMinimumCostNeighbor(Qnear,qnew)
13 w ← xmin.w +

ComputeWindingNumber(xmin.q, qnew,
{p j} j=1,2...,M)

14 h∗∗ ← sgn′(w)
15 T , ih∗∗ , H, Nh ← SubTreeExtension(ih, T ,

h∗∗, xnearest , H, Nh)
16 xnew ← (qnew,w), Tih∗∗ .V ← Tih∗∗ .V ∪

xnew, Tih∗∗ .E ← Tih∗∗ .E ∪ (xmin, xnew)
17 Tih∗∗ ← Rewire(Tih∗∗ , h∗∗, xmin, xnew,

Qnear)
18 T , H, Nh ←

InterHomologyClassRewire(T , h∗∗, ih∗∗ ,
xnew, H, Nh)

19 end
20 end
21 end

Output: Tree T = {(Vih ,Eih)}ih=1,2,...,Nh

in [21]. One modification is that the Rewire procedure in
HRRT∗ algorithm only rewires the neighbor vertices from
Qnear that can be reached from xnew with smaller cost and
maintains the same h-signature h∗∗ after the rewire to xnew.

Additionally, an “InterHomologyClassRewire” procedure
is performed at the end of each sub-tree extension, as
presented in Algorithm 4. This procedure is able to increase
the probability of discovering new homology classes by
actively extending vertices that belong to different homology
classes, as shown in the example scenario given in Fig. 1. In
Line 1, the InterHomologyNearestNeighbor() function first
searches the vertices in the neighborhood of xnew within the
radius of ε(|Vh|) that carry a different h-signature from h∗∗

(as computed in Line 14, Algorithm 3), and finds all vertices
that can be accessed through xnew with a smaller cost. The
vertex x†

min that has the smallest cost being accessed through
xnew is returned by the function. If such a vertex exists, the
new winding numbers w† and the h-signature h† are then
calculated, as in Lines 3-4. In Line 5, the SubTreeExtension()
procedure is executed given the new h-signature h†, and
returns the index ih† of the designated sub-tree for the new
vertex extension. Finally, a new vertex x‡

min is created given



Algorithm 4: InterHomologyClassRewire
Input : T , h∗∗, ih∗∗ , xnew, H, Nh

1 x†
min ← InterHomologyNearestNeighbor(h∗∗,T,xnew)

2 if x†
min exists then

3 w† ← xnew.w + ComputeWindingNumber(xnew.q,
x†

min.q, {p j} j=1,2...,M)
4 h† ← sgn′(w†)
5 T , ih† , H, Nh ← SubTreeExtension(ih∗ , T , h†,

xnew, H, Nh)
6 x‡

min ← (x†
min.q, w†)

7 Tih† .V ← Tih† .V ∪ x‡
min, Tih† .E ← Tih† .E ∪ (x‡

min,
xnew)

8 end
Output: T , H, Nh

Fig. 1. An example scenario for Inter-Homology-Class Rewire. Suppose
there are two homology classes discovered, where the red sub-tree is grown
out the blue sub-tree and the ancestry vertices that belongs to the blue
sub-tree are added to the red sub-tree. During the expansion of the red
sub-tree, suppose a new vertex xnew is generated from the vertex xmin,
which consequently expands the blue sub-tree. The “Inter-Homology-Class
Rewire” procedure is then performed, where a vertex x†

min, carrying a
different h-signature from xnew, finds a smaller cost path by accessing
from xnew. By connecting a copy of x†

min to xnew, a new homology class
is discovered and a new sub-tree (represented by green lines) is initialized.

the state of xmin and the new winding number w†, and added
to the corresponding sub-tree Tih† , as in Lines 6-7.

IV. ILQG BASED BELIEF SPACE PLANNING

In this section, the iLQG based belief space planner is
briefly reviewed. The readers are referred to [5] for com-
plete discussion. The iLQG based belief space planner uses
parametrized belief state representation and applies the iLQG
controller to perform value iteration. Specifically, let motion
noise mt and sensing noise nt be modeled by Gaussian noises,
i.e., mt ∼ N(0, I) and nt ∼ N(0, I). The stochastic robot
dynamics is given as xt+1 = f (xt ,ut ,mt), and observation
model is given as zt = h(xt ,nt), where xt ∈ C f denotes the
state vector, zt ∈ Z denotes the observation vector, ut ∈U is
the control input. The belief bt is represented by Gaussian
distributions and is defined as bt = (x̂T

t ,vec(
√

Σt)), where
Σt is the variance of the Gaussian distribution N (x̂T

t ,Σt),
and x̂t denotes the estimated state as the system is partially
observable. The vec function is used to vectorize the variance
matrix. The iLQG controller employs the extended Kalman

Fig. 2. The expansion of the HRRT tree in an example 2D scenario under
the modulo of 2. (a)-(c) The expansion of the four sub-trees at iteration
of 500, 1000, and 2000, respectively. (d) The trajectories in 4 different
homology classes discovered by the HRRT algorithm after 2000 iterations
(0.2 s), where the cyan trajectory is discovered during the expansion of the
white sub-tree. The h-signatures of the trajectories plotted in red, green,
white, cyan are (1,−1), (1,1), (−1,−1), and (−1,1), respectively.

filter (EKF) to propagate the belief dynamics. Value iteration
is performed to locally optimize the control policies ut and
iteratively minimize the expected value of the user-defined
cost function, where a backward sweep and a forward sweep
are executed in each iteration.

V. RESULTS

The proposed methods are evaluated in simulations of
motion planning scenarios. First, the performance of the
HRRT/HRRT* planner is evaluated in 2D scenarios using
the winding number modulo m = 2, followed by examples
of uncertainty reasoning in 2D and 3D spaces using the
homology guided belief space planning method.

A. Planning Results of HRRT/HRRT∗

The HRRT/HRRT* algorithms are implemented in C++ on
Ubuntu 20.04 operating system. The computer is equipped
with Intel® CoreTM i9-11900 CPU @ 2.50GHz and 32.0 GiB
memory. First, the HRRT sub-tree expansion in 500, 1000,
and 2000 iterations are presented in Fig. 2 (a)-(c), where
the 4 different sub-trees are marked in 4 different colors.
The homology inequivalent nominal trajectories found by the
HRRT planner are given in Fig. 2 (d).

The performance of the HRRT∗ is tested in a 2D envi-
ronment with 3 rectangular obstacles, as presented in Fig. 3.
All 23 homology inequivalent trajectories are discovered by
the HRRT∗ after 2700 iterations (2.5 s) as shown in Fig. 3
(b). Fig. 3 (a) shows the shortest distance reduction of the
optimal trajectories in each homology classes vs expansion
iterations.

The performance of the HRRT∗ is then compared with PI-
RRHT∗ [9] and WA-RRT∗[14] in 3 and 4 obstacles scenarios
over 20 trials, as presented in Fig. 4, where a narrow passage
between two of the obstacles is created in the 3 obstacles
scenario. Fig. 4 (a) and (b) present the 3 and 4 obstacles



Fig. 3. Generating homology inequivalent trajectories in 2D environment
with 3 obstacles. (a) The shortest distance of the optimal trajectory in each
homology class to the goal state vs expansion iterations. (b) All 23 homology
inequivalent trajectories found by HRRT∗ algorithm under the modulo of 2
after 2700 iterations (2.5 s).

TABLE I
TIME FOR ALL HOMOLOGY INEQUIVALENT TRAJECTORIES TO ARRIVE

THE GOAL REGION IN THE 3- AND 4-OBSTACLE SCENARIOS

Scenarios HRRT∗ PI-RRHT∗ WA-RRT∗
8-Homology Classes 0.53 s 0.98 s 12.74 s

16-Homology Classes 2.26 s 2.43 s 94.42 s

scenarios and the homology inequivalent trajectories discov-
ered by the HRRT∗. The average homology class discovery
rate of HRRT∗, PI-RRHT∗, and WA-RRT∗ over 20 trials
given scenarios in (a) and (b) are presented in Fig. 4 (c)
and (d), respectively. In the 3 obstacles environment with
one narrow passage, HRRT∗ finds all 8 homology classes in
1050 iterations on average, PI-RRHT∗ finds the 8 homology
classes in 1814 iterations on average, and WA-RRT∗ finds
the 8 homology classes in 5516 iterations on average. In the
4 obstacles scenario, HRRT∗ finds all 16 homology classes in
890 iterations on average, PI-RRHT∗ finds the 8 homology
classes in 1616 iterations on average, and WA-RRT∗ finds
the 8 homology classes in 17188 iterations on average. As
shown in Fig. 4 (c) and (d), HRRT∗ improves the homology
class discovery speed compared to PI-RRHT∗ and WA-RRT∗

in both scenarios. Table. I presents the average time for all
homology inequivalent trajectories to arrive at the goal region
in scenarios (a) and (b) over 20 trials.

B. Uncertainty Reasoning Via Homology-Guided Belief
Space Planning

The first belief space planner example presented is a car-
like robot in a 2D light-dark environment, where the robot

Fig. 4. (a) 8 homology inequivalent trajectories found using HRRT∗ in a
3 obstacles scenario with a narrow passage. (b) 16 homology inequivalent
trajectories found using HRRT∗ in a 4 obstacles scenario. (c) The homology
classes discovered (x-axis) by HRRT∗, PI-RRHT∗, and WA-RRT∗ vs
exploration iterations (y-axis) in scenario (a). (d) The homology classes
discovered by HRRT∗, PI-RRHT∗, and WA-RRT∗ vs exploration iterations
in scenario (b).

Fig. 5. The light-dark example where the robot’s sensing noise is reduced
when its positional distance to the beacon is smaller. The shortest trajectory
in green homology class is unsafe to pass the narrow passage, while the
trajectory in the red homology class is able to safely pass the narrow passage
with smaller uncertainty.

needs to pass a narrow passage to pick up an object marked
by “X”, as presented in Fig. 5, then reach to the goal region
(mark by blue). The sensing noise decreases exponentially
with respect to its relative position to the light region. Two
homotopy inequivalent nominal trajectories passing through
the passage found by the HRRT∗ planner are locally opti-
mized in belief space using the iLQG based belief space plan-
ner. As shown in Fig. 5, the shortest trajectory in the green
homology class has higher probability of colliding, compared
to the optimized trajectory in the red homology class, which
is able to gain better sensing and is thus preferable for the
mission. This illustrates the advantage of the HRRT∗ planner
based algorithm in identifying a globally optimal solution by
generating homology inequivalent nominal trajectories which
are subsequently locally optimized.

In the second example, we present a highway car passing
scenario, as shown in Fig. 6 (a). In this scenario, the red car
needs to pass the front car while two car from left and right
lane are in close distance. The state space in this problem is



Fig. 6. (a) The highway car passing scenario where the red car needs to choose a lane to pass the front car with two cars chasing up from the left and
right lanes. The red car needs to decide which lane to pass and when to pass, i.e., pass after or before the yellow cars. (b) The car passing scenario is
a 3D planning problem, with lateral (x-axis) and longitudinal (y-axis) positions and time (z-axis). The motions of the front and side cars are represented
by the blue rectangles. Four different homology inequivalent trajectories are found using the HRRT planner, represented in 4 different colors. The red and
magenta trajectories complete the passing before the yellow cars from the left and the right lanes, respectively. The green and cyan trajectories complete
the passing after the yellow cars from the left and the right lanes, respectively. (c) The optimized trajectories in 4 homology classes using iLQG based
belief space planner.

3-dimensional (x,y, t), as the obstacles are not static. In this
scenario, the red car has 4 choices for passing, i.e., make the
passing before or after the yellow car in the left or the right
lane. Suppose the front car is moving with speed of 22 m/s,
the yellow cars in the left and right lane are moving with
the speed of 40 m/s and 31 m/s, respectively. The motion
of the front car and the two cars from the left and right
lanes vs 200 future time steps are presented in Fig. 6 (b),
represented by the blue parallelepipeds. As shown in Fig. 6
(b), 4 nominal trajectories are found using the HRRT planner,
where the topological task projection method proposed in
[14] is employed to identify winding centers in x-y and y-z
planes.

The iLQG belief space planner is then employed to find the
locally optimal trajectories that minimizes the probability of
potential collisions, the optimized trajectories are presented
in Fig. 6 (c). The motion noise of the red car is scaled to
the reciprocal of the distance to the nearest car at a given
time step. As shown in Fig. 6 (c), the trajectory in the
red homology class has a high probability of collision with
the front car, while the trajectory in the cyan and magenta
homology classes have high probabilities of collision with
the front and the right lane cars. The trajectory in green
homology class is a safer option for passing, as it has a
smaller probability of collision with the front or the left
lane cars, compared to the trajectories in the red, cyan, and
magenta homology classes.

VI. CONCLUSIONS

This paper presents a homology guided belief space mo-
tion planning method in obstacle-cluttered partial observable
environment. The proposed method uses a two step approach.
The proposed HRRT/HRRT∗ algorithms efficiently explore

different homology classes and find homology inequivalent
nominal trajectories. HRRT∗ increases the homology class
discovery speed by exploiting the parallel sub-trees expan-
sion in different homology classes and the active inter-
homology sub-tree growth, compared to the PI-RRHT∗ and
WA-RRT∗ algorithms. Then, the iLQG based belief space
planner is employed to locally optimize each of the homol-
ogy inequivalent nominal trajectories over the motion and
sensing uncertainties. Experimental examples for uncertainty
reasoning and decision making in obstacle-cluttered environ-
ments using the proposed method are presented. Although
the present homology guided belief space planning method
uses iLQG based belief space planner, the HRRT/HRRT∗ can
be employed by other local belief space planning methods,
e.g., [3], [6], [22], [23].
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