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Abstract— This paper presents algorithms for three-
dimensional tracking of surgical needles using the stereo en-
doscopic camera images obtained from the da Vinci R© Surgical
Robotic System. The proposed method employs Bayesian state
estimation, computer vision techniques, and robot kinematics.
A virtual needle rendering procedure is implemented to create
simulated images of the surgical needle under the da Vinci R©
robot endoscope, which makes it possible to measure the simi-
larity between the rendered needle image and the real needle.
A particle filter algorithm using the mentioned techniques is
then used for tracking the surgical needle. The performance
of the tracking is experimentally evaluated using an actual da
Vinci R© surgical robotic system and quantitatively validated in
a ROS/Gazebo simulation thereof.

I. INTRODUCTION

Minimally Invasive Surgery (MIS) has demonstrated sig-

nificant benefits including reduced patient cost, length of

hospital stay, recovery time, and postoperative pain [1]. The

main goal of MIS is to duplicate open surgical techniques

without large incisions in order to minimize complications.

Advanced robotic systems such as the da Vinci R© robotic

surgical system (Intuitive Surgical, Inc., Sunnyvale, CA)

allow surgeons to perform MIS using teleoperated robotic

manipulators instead of manual surgical tools. Surgeons are

provided with a console equipped with two master controllers

that can manipulate robotic arms. The vision system provides

a high-definition three-dimensional (3D) image for surgeons

to see the surgical procedure in real-time, while the teleop-

eration system monitors the surgeon’s hand movements and

mimics with the robotic grippers with high precision.

Using such a system, surgeons are able to perform in-

tricate surgeries with high precision and dexterity. Robotic

minimally invasive surgery (RMIS) has been widely used in

a variety of procedures[2], [3], including, prostatectomy [3],

cardiac surgery [4] and thyroidectomy [5].

However, due to the nature of master-slave teleoperation,

RMIS usually results in longer operation times and the

learning curve is steeper than other MIS techniques [6]. In

addition, the more limited robotic workspace and narrow

laparoscopic camera view can make low-level tasks more

challenging and time consuming. To enhance surgeon per-

formance and reduce the operation time, autonomous robotic
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surgical assistants [7] have been proposed to perform low-

level surgical manipulation tasks such as suturing [8], [9],

[10], debridement [11], dissection, and retraction [12].

Suturing is ideally suited to this form of automation

due to its repetitive nature. To reduce the tissue trauma

and operation time, an automation framework can keep the

surgeon as the decision maker while relying on the robotic

system to manage the execution of low-level motions.

The dynamic nature of surgical environments and the

underlying substantial uncertainty necessitates the surgical

manipulations to be performed under sensory guidance (as

opposed to the use of primarily pre-planned manipulation

strategies employed in traditional industrial robotics appli-

cations). As such, development of methods for perceiving

the state of the surgical environment and the robotic system

is a key requirement for autonomous and semi-autonomous

execution of surgical manipulation tasks. Once such robust

robotic perception algorithms are available, they can be

used to perform precise visually guided manipulations by

applying visual servo-control strategies, allow the robotic

surgical system to operate under imperfect and varying

robotic manipulator/camera calibration conditions, and to

deal with the uncertainties resulting from unknown initial

conditions and complex tissue deformation dynamics.

This study specifically focuses on the three-dimensional

tracking of surgical needles from stereo endoscopic video

image streams in RMIS. Localization and tracking of surgical

needles is a key enabling technology for autonomous robotic

execution of surgical suturing, since errors in needle trajecto-

ries resulting from incorrect needle grasps, needle slips, and

robot/camera miscalibration may lead to task failures. For

example, imperfect needle grasps may lead to increases in

task completion time due to need for subsequent (possibly

multiple) needle regrasps [13], whereas imperfect needle

trajectories during a needle drive may cause increased tissue

damage [14] or even result in complete failure of the suture.

Knowledge of the pose of the surgical needle throughout

the task would allow the system to deal with uncertainties in

initial needle grasp as well as those resulting from unmodeled

changes in the needle grasp configuration due to needle-

tissue interaction forces.

We propose a vision-based probabilistic (Bayesian) state-

estimation method for localizing and tracking the surgical

needle. For state evolution, the proposed method employs the

forward kinematics of the robotic surgical gripper manipulat-

ing the surgical needle whenever the needle is being directly

grasped, and uses a Brownian motion model whenever the

needle is not being directly grasped. Video images from

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 6617

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on June 02,2020 at 16:51:50 UTC from IEEE Xplore.  Restrictions apply. 



stereo endoscopes provide the sensory feedback used in the

measurement updates of the state estimation. A particle filter

is used as the Bayesian estimator, as the underlying system

is neither linear nor Gaussian. The proposed needle track-

ing algorithm is quantitatively validated by evaluating the

needle tracking accuracy under different noise and occlusion

conditions, using a ROS/Gazebo-based simulation of the da

Vinci R© surgical robotic system. The performance of the

proposed algorithm is also validated in hardware experiments

on an actual da Vinci R© surgical robotic system for tracking

a surgical needle and grasping it autonomously.

The rest of the paper is organized as follows. Section

II discusses the related studies on surgical needle tracking.

In Section III, the problem formulation and the proposed

methods are introduced. The specific details of simulation

and hardware based validation tests and the results of the

needle tracking algorithm are presented in Section IV. The

conclusions are presented in Section V.

II. RELATED STUDIES

The success of the autonomous suturing task is highly

dependent on tracking task-critical elements such as the sur-

gical needle, suture thread, and tissue. In order to complete

the suturing task autonomously, the surgical needle needs

to be localized and tracked during the execution of the task.

Therefore, researchers studying the autonomous suturing task

tried to solve this problem using various methods.

Nageotte et al. [15] proposed a circular needle and needle-

holder localization algorithm for computer-assisted suturing

in laparoscopic surgery. They modeled the needle-holder as

a cylinder and attached passive visual markers to track its

location. The surgical needle was colored to simplify its

segmentation, and an ellipse-fitting algorithm was applied on

the segmented image to calculate the 3D pose of the needle.

Sen et al. [16] developed an automated multi-throw surgi-

cal suturing algorithm using the da Vinci R© surgical system.

Instead of the da Vinci R© endoscope, a custom stereo camera

pair was employed to provide a larger workspace, and a

larger-than-normal, yellow-painted surgical needle was used.

In order to segment the image, the needle’s distinctive shape

and color were leveraged to assist HSV (Hue, Saturation,

Value) segmentation to identify it. Once a set of image points

are extracted from the segmented image, the 3D pose of the

needle was calculated using an ellipse fitting algorithm.

Iyer et al. [17] attempted to solve the suturing problem

by using a single-arm robotic manipulator with a standard

laparoscopic needle holder, curved surgical needle and a

clinical endoscope (single camera). In order to track the

surgical needle, the obtained image was segmented using

OpenCV thinning and smoothing functions. A monocular

pose measurement method was then used along with the

least-square ellipse fitting OpenCV functions to estimate the

position and orientation of the semi-circular needle.

Kurose et al. [18] studied needle tracking for a micro-

surgery robotic system. They generated an off-line data set of

216,000 needle contour models using a 3D CAD model. Dur-

ing tracking, the image of the operation area was obtained

from the microscope and segmented using the Canny edge

detection algorithm and needle color information. Then the

segmented needle image was searched against the database

of the needle contour models to find the best match.

The earlier studies in the literature on vision-based lo-

calization and tracking of surgical needles all rely on sim-

plifying assumptions such as artificially colored needles,

unchanged lighting conditions, a pregrasped needle, no tissue

deformations, or custom built camera systems, none of which

are applicable to practical RMIS scenarios. In contrast,

the present study aims to perform needle tracking using

images from the endoscopic stereo cameras of a realistic

RMIS system without any modification to the robotic tools,

endoscopes, or the surgical needles. Additionally, the goal

is to achieve tracking which is robust to occlusions of the

needle. Specifically, the availability of the state evolution

model as part of the proposed Bayesian state-estimation

scheme would allow the system to maintain tracking and to

gracefully recover from periods of needle occlusion. To the

best of authors’ knowledge, there are no earlier published

studies where detailed experiments were performed to test

the repeatably and robustness of the tracking algorithm under

occlusion, which is an inevitable scenario during RMIS.

III. PARTICLE FILTER ALGORITHM

Bayesian filtering algorithms enable estimation of a sys-

tem’s belief state under system and environmental uncertain-

ties. In these algorithms, the belief (bel(xt)) at time t is recur-

sively calculated from the belief (bel(xt−1)) at time t-1 using

measurement and control data as well as probabilistic models

of the system dynamics and the measurement error. Bayesian

state estimation methods have been used extensively in the

robotics literature, and shown to be very suitable to solve

real-time tracking problems [19], [20], [21].

We employ a particle filter as our underlying Bayesian

filtering algorithm. The particle filter algorithm, also known

as the sequential Monte Carlo estimation algorithm [22],

[23], is one of the most popular Bayesian filtering techniques

for nonlinear and non-Gaussian problems. The core idea of

the particle filter algorithm is to approximate the posterior

probability distribution of the state, such as the surgical

needle pose, by using a finite number of randomly generated

samples, called particles. Particle filters have been widely

used in robotics and computer vision applications [22],

including pose estimation on the SE(3) group [24]. The

particle filter algorithm can be divided into two main steps:

state prediction and state update. In the prediction step,

the particles are propagated using the system model. In the

update step, the weight of each particle is measured based on

the observation model. The overall flow diagram can be seen

on Fig. 1, and the summary of the particle filter algorithm

is given in Algorithm 1.

There are different approaches for generating the initial set

of particles, such as randomly sampling the entire state space

if there is no a priori information or generating samples in

the region where the target is expected to be if there is a
priori information. In this study, there are two cases: the
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Algorithm 1: Particle filtering algorithm for surgical

needle tracking. Bt = {x[n]t , n = 1...N} represents the

belief of the needle state at time t. N is the number of

particles used. ut and zt are respectively the control input

to system and the observed measurement at time t.

1 function UpdateNeedleBelief(Bt−1,ut ,zt)
2 B̄t ← /0

3 Bt ← /0

4 for n = 1→ N do
5 sample x[n]t ∼ p(xt |ut ,x

[n]
t−1)

6 ω [n]
t ← p(zt |x[n]t )

7 B̄t ← B̂t +(x[n]t ,ω [n]
t )

8 end
9 Bt ← LowVarianceResampler(B̄t)

10 return Bt
11 end function

Fig. 1. Proposed particle filter algorithm flow for surgical needle tracking.

needle is either initially held by the robotic hand or it is

freely placed in the surgical scene. If the needle is grasped by

the robot, the forward kinematics of the robot arm are used

to generate the initial set of samples around the expected

needle pose. If the needle is free, then it is assumed that

the rough pose of the needle is known, and the initial set

particles are randomly generated in this region.1

The first step in the algorithm (Algorithm 1, Line 5) is

to update the particle states using the motion model. In this

study, there are two different cases for the update step. If

the needle is free, i.e., not being held by the robot, then

the motion of the needle is modeled as Brownian motion,

where the state of each particle is perturbed at each time step

with Gaussian noise. This model would allow the particle

filter to follow a (slowly) moving needle, as well as to

accommodate uncertainties in the initialized needle pose.

If the needle is grasped by the robot, then each particle

state is updated using the incremental motion of the robotic

1This latter assumption is used to avoid excessive computation necessary
to solve the global localization problem at the initialization stage. This
is not a severely restrictive assumption, since it is not unreasonable for
a supervisory-controlled intelligent robotic surgical assistance system to
expect the physician to indicate the general location of the needle to be used
for each specific surgical task. Alternatively, it is also possible to construct
a cold-initialization algorithm that employs computer vision techniques to
search and locate the needle in the scene. However, this latter approach has
not been pursued in this study.

gripper holding the needle. The incremental motion of the

gripper can be estimated using the forward kinematics or the

Jacobian of the manipulator, with added Gaussian noise to

account for uncertainties in robot motion as well as errors

in robot calibration.
The next step in the algorithm is the measurement update

(Algorithm 1, Line 6). In the particle filter, each particle

represents a hypothesis for the position and orientation of the

needle. As part of the measurement update, the observation

likelihoods for each of these hypotheses need to be evaluated.

The observation likelihoods quantify how well each of the

needle pose hypotheses match the observed images of the

surgical scene captured by the endoscopic stereo vision

system. In our proposed approach, the images acquired by

the endoscope are segmented using a thin feature extraction

algorithm in order to emphasize the needle outline (and

other thin features in the scene). The observation likelihoods

are then estimated from the image space similarity between

the virtual images of the needle geometry generated from

the needle pose hypotheses and the observed segmented

images of the scene, as calculated using the normalized

cross-correlation between them.
The final step of the algorithm is the resampling step

(Algorithm 1, Line 9). In our proposed approach, the low

variance resampling method [25] is employed.

A. Thin Feature Segmentation
Due to the thin and cylindrical structure of the surgical

needle, many edge detection algorithms detect the surround-

ings of the needle instead of the needle itself. In order to

segment the surgical needle more reliably, a thin feature

enhancement algorithm developed by Jackson et al. [10],

[26], which is based on algorithms from Frangi et al. [27]

and Steger et al. [28], was employed.
The input image from the camera is first converted into

grayscale then convolved with the Hessian matrix. This

convolution produces a matrix for each pixel of the original

gray scale image. Each matrix contains a set of 4 pixels that

is in the form of a 2×2 matrix in R
2×2 for each pixel.

H(σ) =

[
∂ 2

∂x2
∂ 2

∂x∂y
∂ 2

∂y∂x
∂ 2

∂y2

]
(N2(σ2,x,y)∗ I) (1)

where I is the original gray scale image and N2(σ2,x,y) =
1

2πσ2 e−
x2+y2

σ2 is a 2 dimensional Gaussian kernel. Each

Hessian matrix is composed of eigenvalues (|λ1| < |λ2|)
and orthogonal eigenvectors v1 ⊥ v2 ∈ R

2. The eigenvalues

correspond to the two principle directions as they relate to the

Hessian of the convolved scale space image representation.

The output image is generated using the magnitude and

ratio of these eigenvalues. The local image region likely

contains a thin feature, such as a surgical needle, when one

of the eigenvalues is large and the other is small. Using the

eigenvalues of the corresponding Hessian matrix, the maps

V
′
l : Ω→R

2 for each pixel location V
′
l (i, j) are generated as

follows.

‖V ′l ‖= e
−R2

B
2β2 (1− e−

S2

2c2 ) (2)
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Fig. 2. Segmentation algorithm resulting image (left) using the original
stereo camera image (right).

Fig. 3. Two dimensional points are sampled around the semicircular shape.
Points are then projected onto the image space using the camera intrinsic
matrix. Image space points are connected with lines to shape the needle
geometry in the camera image space.

V
′
l = v2‖V ′l ‖ (3)

where s =
√

λ 2
1 +λ 2

2 and RB = |λ1|/|λ2| are measures of

how small λ2 is compared to λ1. The parameters β and c are

user defined parameters to tune the segmentation result based

on the camera and lighting conditions. In order to reduce the

image processing noise, the map V
′
l (i, j) is smoothed using

a normalized low pass Gaussian kernel. The final results of

the segmented images for the left and right stereo images

are obtained as Vl ,Vr : Ω→ R
2 which is shown in Fig 2.

In order to increase the speed of the segmentation process,

a graphical processing unit (GPU) is employed through the

CUDA interface.

B. Virtual Needle Rendering

One of the main components of a Bayesian state esti-

mation scheme is the measurement model. As part of the

measurement model, a method to virtually render a surgical

needle is employed to represent a needle pose hypothesis as

observed through the stereo endoscope cameras of the system

(described in Section II.C.). The surgical needle is modeled

as a semicircle with a fixed radius.

The surgical needle is rendered using the camera projec-

tion matrix as shown in Fig. 3. First, 3D points are sampled

that form a semicircle in the needle frame (1). Then points

are projected onto the image space using the camera intrinsic

matrix (2). The projected points form the two-dimensional

needle shape in the image space. Finally points are connected

with lines (3) to form the needle image in the image space

(4). Increasing the number of sample points result in a

smoother needle shape while reducing the overall execution

speed of the algorithm since the number of projections also

increases.

C. Measurement Model

In this study, the measurement model quantifies the sim-

ilarity between the segmented image received from the

Fig. 4. The box containing the rendered image is saved during the rendering
procedure. Using the box, segmented and rendered images are cropped from
the same locations and used as the template and the source images in the
template matching algorithm with a normalized cross correlation pixel-wise
matching metric.

camera stream and the virtually-rendered hypotheses of

the two-dimensional needle pose image. Normalized cross-

correlation (available through the OpenCV template match-

ing algorithm) is used to measure the similarity:

R =

∑
x′,y′

T (x′,y′)I(x′,y′)√
∑

x′,y′
T (x′,y′)2I(x′,y′)2

. (4)

The weight ω [n]
t of a given particle n is then set as

ω i
t :=

√
R2

le f t +R2
right , (5)

where Rle f t and Rright are the matching scores calculated

using the left and right camera images, respectively.

D. Motion Model

When tracking a surgical needle, the motion of the real

object needs to be modeled. In this study, the motion model

is separated into two cases: one where the needle is free

and one where the needle is held by the manipulator. If

the needle is free, then there is no motion to be observed

from the manipulator sensors. In this case, the motion of

the needle is modeled as Brownian motion, perturbing the

particles with a small amount of Gaussian noise at every

iteration. This perturbation motion spreads the particles to

avoid false convergence and enables a search mechanism.

Once the free needle is localized, it can be grabbed by the

manipulator at its now known configuration.

In the second case, the needle needs to be tracked while

being held and moved by a manipulator. The coordinate

transformations that will be used for the derivation of the

motion model for this case are shown in Fig. 5.2

V b
CN =

������0

Adg−1
SN

V b
CS +V b

SN , (6)

where V b
CN is the body velocity of the needle in terms of

the camera frame, V b
SN is the body velocity of the needle in

terms of the manipulator frame and V b
CS is the body velocity

of the manipulator in terms of the camera frame. Since

2For simplicity, the camera is assumed to be at a fixed configuration
relative to the robotic manipulator base frame in the following derivation.
However, the formulation can easily be generalized to the moving camera
case.
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Fig. 5. Frames and transformation matrices used in the motion model
derivation, where gSC is the transformation between the camera and the
manipulator base, gSC(θ(t)) is the tool tip transformation calculated from
forward kinematics at time t, gCN is the configuration of the needle frame
in terms of the camera frame and gT N is the needle grasp configuration,
which is assumed to be known (see below).

the transformation between the camera and the manipulator

is fixed, the body velocity of the camera in terms of the

manipulator is V b
CS = 0. Then, the body velocity of the needle,

in terms of the camera frame, is the same as the body velocity

of the needle, in terms of the manipulator frame:

V b
CN =V b

SN . (7)

Using the robot kinematics, the body velocity of the needle,

in terms of the manipulator frame, can be calculated as

V b
SN = Adg−1

T N
V b

ST +�
���

0
V b

T N , (8)

where V b
SN and V b

ST are respectively the body velocities of

the needle and manipulator tip, in terms of the manipulator

frame, and V b
T N is the body velocity of the needle, in terms of

the manipulator tip frame. Here, the needle is grasped by the

manipulator with the configuration of gT N . This configuration

is assumed to be known and to remain constant during the

motion. Therefore, the body velocity of the needle, in terms

of the manipulator tip frame, is V b
T N = 0.

The body velocity of the tool tip in terms of the manipu-

lator frame is computed using the manipulator Jacobian as

V b
ST = Jb

ST θ̇robot , (9)

where Jb
ST is the robot’s body Jacobian and θ̇robot is a vector

containing the sensor readings of the robot joints. Using (7),

the body velocity of the needle in terms of the camera frame

can be written as:

V b
CN = Adg−1

T N
Jb

ST θ̇robot . (10)

In order to find the displacement of the real needle in

space, the spatial velocity of the needle, in terms of the

camera frame, V s
CN , is computed from the body velocity of

the needle in terms of the camera frame,V b
CN :

V s
CN = AdgCNV b

CN , (11)

where gCN is the transformation between the needle and the

camera. Finally, each particle is updated as:

gCN(t +Δt) = e
ˆ̃V s
CN ΔtgCN(t) , (12)

where e
ˆ̃V s
CN Δt is the needle displacement predicted by the

motion model, and

Ṽ s
CN =V s

CN +N (Σ) (13)

is the spatial velocity of the needle, in terms of the camera

frame, with additive Gaussian noise N (Σ) to account for

robot motion uncertainties.

IV. VALIDATION RESULTS

The particle filter algorithm for the surgical needle lo-

calization and tracking was evaluated both in a simulation

environment and on the real robot system. In the simulation

and hardware tests, a 26 mm diameter semi-circular surgical

needle is being localized and tracked by the proposed algo-

rithm using images form the stereo endoscopic cameras of

the da Vinci R© surgical robotic system.

A. Simulation-based Validation Results

The proposed method was validated using a ROS/Gazebo-

based simulation of the da Vinci R© surgical robotic system.

This simulation environment provides a perfect baseline

since the camera to robot transformation, robot forward

kinematics, and the joint sensor feedback are exactly known.

In order to create a validation scenario, noise is added to the

joint sensor feedback to the tacking algorithm so that the

position and orientation values are more realistic.

In the first set of examples, the static convergence of

the particle filter algorithm is validated. Specifically, the

needle stays in the same pose, while the initial particle set

is initialized with several different levels of uncertainty. In

these examples, the particle filter algorithm is initialized with

250 particles in the Gazebo world.

Examples of surgical needle localization results can be

seen in Fig. 6 and 7. In the top row of the example shown

in Fig. 6, the best matched particle is projected onto the

Gazebo endoscopic images in cyan. The bottom row images

show the thin feature segmented camera images with the

distribution of all of the particles. In this example, particle

Fig. 6. An example surgical needle tracking result in Gazebo-based
simulation environment. Top row images show the tracking result of the
best particle rendered as cyan. Bottom row images show the segmented
images superimposed with the distribution of all of the particles. In both
cases, the left and right camera views are given in the corresponding images.
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Fig. 7. Example surgical needle tracking result in Gazebo-based simulation
environment: Top row images show the initial particle error and bottom
row images show the best matched particle. In this example, the particle
filter algorithm is using 250 particles. Initial position and orientation errors
were 6mm and 5◦ respectively. When the particles converged, the resulting
position and orientation errors were 0.62mm and 0.96◦ respectively. In both
cases, the left and right camera views are given in the corresponding images.

filter was initialized with an initial position error of 7mm

and orientation error of 8◦. In this scenario, the particles

converged with a final position error of 0.7mm and the

orientation error of 2.3◦. A second example of localization

result is presented in Fig. 7, where the initial and final errors

of the needle pose (as estimated by the best particle) are

shown respectively in the top and bottom row of images.

The static localization performance of the proposed

method was tested using 50 randomly selected needle po-

sitions and orientations under the restriction that the needle

must be visible to the camera without occlusion, and each

position was tested with four different levels of initial posi-

tion and orientation errors. For each pose of the needle, the

best particle position and orientation error were recorded at

each step of the algorithm. The results of the average of 50

poses for the three smallest levels of initial error are shown

in Fig. 8.

In Fig. 9, the localization errors for each of the 50 random

trials for the highest initial position and orientation error case

(8.7mm position and 9.16◦ orientation error) are presented. It

can be seen that the particle filter algorithm did not converge

at a few of the poses. This is not unexpected, since, in particle

filter algorithms, as the initial uncertainty increases, more

particles are needed to achieve sufficient coverage of the state

space for proper convergence.3

In the second set of validation results, the dynamic track-

ing performance of the proposed algorithm are evaluated.

In order to test the robustness of the proposed method

during tracking, the surgical needle was grasped by the robot

arm and followed 40 randomly selected needle trajectories

in the Gazebo simulation environment. At each trajectory,

the particles were initialized with the true position and

orientation of the simulated needle using 250 particles. Three

different noise levels were added to the joint sensor feedback

during the motion of the arm. The position and angle errors

3There were no convergence problems encountered at the three lower
uncertainty levels evaluated.

Fig. 8. The particle filter algorithm is initialized with 250 particles and
tested using 50 different randomly selected poses with a maximum position
and orientation error of 8.7mm and 9.16◦ respectively.

Fig. 9. Particle filter algorithm tested with initial position and orientation
error of 8.7mm and 9.16◦ respectively. Localization errors for 50 different
randomly chosen needle configurations are shown.

averaged over the 40 trials for each of the three noise level

cases are presented in Fig. 10.

The simulation-based validation results demonstrate that

the surgical needle tracking algorithm using a particle filter

is robust for different levels of initial position errors as well

as the joint sensor feedback errors. The initial location guess

of the needle has a large impact the convergence time and

in some cases the likelihood of success.

B. Hardware Validation Results

The proposed method was validated on a da Vinci R© IS-

1200 Surgical Robotic System, upgraded with the open-

source/open-hardware da Vinci Research Kit (dVRK) [29],

which allows direct computer-based control of the system.

The performance of the proposed method is tested under

different conditions including occlusions. The surgical needle

localization results using 300 particles under six different

Fig. 10. Particle filter algorithm performance under three different levels of
joint sensor noise. The algorithm was tested with 40 different initial poses,
each of which followed a different randomly generated trajectory. The best
particle position and orientation error were recorded at each iteration for 40
trajectories. The plots show the position and angle errors averaged over the
40 trials for each of the three noise level cases.
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needle position and orientation cases are shown in Fig. 11.

In these examples, the surgical needle is tracked while it is

being held by one of the da Vinci R© robot manipulators. In

order to create a realistic scenario for RMIS, the second

da Vinci R© robot manipulator are manually inserted into

the scene. To increase the background complexity, another

needle is held by the second da Vinci R© robot manipulator

and presented in a similar position and orientation so that it

could create a potential false positive match. This scenario

was specifically created to test if the proposed method is able

to handle potential local optima in the measurement model.

The experimental results indicate that the needle tracking

algorithm can handle occlusions and potential false positive

disturbances. It is also observed that the algorithm is able to

recover the needle position even in a complex environment.

The tracking performance of the proposed method was

further tested while the needle was in motion. For this

experiment, the needle was held by the da Vinci R© robotic

manipulator with a known configuration and moved under

the endoscope. During the tracking, the second tool holding

another needle was presented into the scene. Fig. 12 shows a

time sequence of the needle tracking algorithm results where

the needle is occluded in different variations. The results

indicate that the tracking algorithm can successfully track the

surgical needle under occlusions and that it can gracefully

recover from intermittent occlusions. A video attachment

of the presented paper shows additional hardware tracking

results.

Fig. 13 presents a physical validation of the algorithm

while performing a needle grasp task. The particle filter

algorithm is initialized with 300 particles sampled randomly

by covering the workspace. A surgical needle is randomly

placed into the scene. The algorithm then localizes the

needle position and orientation. After the convergence of the

localization, the needle position and orientation are sent to

the robot controllers to successfully grasp the needle.

V. CONCLUSIONS

This study presents a particle filter-based framework for

tracking surgical needles using stereo endoscopic images. A

virtual needle rendering procedure is implemented to produce

candidate needle models in the image space. Using the

virtually rendered tool model, an image matching method is

applied to form a measurement model for the particle filter

algorithm. The performance of the tracking is quantitatively

validated in a simulation environment and experimentally

evaluated using the physical da Vinci R© surgical robotic

system. The validation results indicate that the proposed

algorithm can successfully localize the needle starting from

moderate levels of initialization uncertainty, and successfully

track the needle while it is being manipulated by a robotic

gripper. The algorithm was also able to maintain tracking

in complex scenes, and under intermittent occlusions of the

needle.

Future work will proceed in several directions. The pro-

posed method uses the segmentation method implemented

on a GPU-based parallel computing scheme. However, other

components of the algorithm are implemented as a serial

algorithm on a CPU. Although the tracking algorithm runs

in real-time, the frame rate (3 frames per second for 250

particles) is currently insufficient for closed-loop visual servo

control. The most time consuming component of the tracking

algorithm is the virtual tool rendering part since the needle

frame points projected into the image space several times for

each particle. As a part of the future work, we are working

on a GPU-based parallel implementation of the particle filter

algorithm to increase the speed of the algorithm up to a

sufficient frame rate for a closed-loop visual servo control.
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