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Abstract— The development of autonomous or semiau-
tonomous surgical robots stands to improve the performance
of existing teleoperated equipment but requires fine hand-eye
calibration between the free-moving endoscopic camera and
patient-side manipulator arms (PSMs). A novel method of solving
this problem for the da Vinci robotic surgical system and
kinematically similar systems is presented. First, a series of
image-processing and optical-tracking operations are performed
to compute the coordinate transformation between the endoscopic
camera view frame and an optical-tracking marker permanently
affixed to the camera body. Then, the kinematic properties of
the PSM are exploited to compute the coordinate transformation
between the kinematic base frame of the PSM and an optical
marker permanently affixed thereto. Using these transformations,
it is then possible to compute the spatial relationship between
the PSM and the endoscopic camera using only one tracker
snapshot of the two markers. The effectiveness of this calibration
is demonstrated by successfully guiding the PSM end-effector
to points of interest identified through the camera. Additional
tests on a surgical task, namely, grasping a surgical needle, are
also performed to validate the proposed method. The resulting
visually guided robot positioning accuracy is better than the
earlier hand-eye calibration results reported in the literature for
the da Vinci system while supporting the intraoperative update
of the calibration and requiring only devices that are already
commonly used in the surgical environment.

Note to Practitioners—The problem of hand-eye calibration for
the da Vinci robotic surgical system and kinematically similar
systems is addressed in this article. Existing approaches have
insufficient accuracy to automate low-level surgical subtasks and
often require external patterns or subjective human intervention,
none of which are applicable to practical robotic minimally
invasive surgery (RMIS) scenarios. This article breaks down
the calibration procedure into systematic steps to reduce error
accumulation. Most of the time-consuming steps are performed
offline, allowing them to be retained between movements. Each
time the passive joints of the manipulator or the endoscope
move, all that needs to be done is to refresh the transformation
between the fixed markers. This key idea enables intraoperative
updates of the hand-eye calibration to be performed online
without sacrificing precision. The calibration method presented
here demonstrates that the achieved accuracy is sufficient for
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automating basic surgical manipulation tasks, such as grasping
a suturing needle. The hand-eye calibration will be incorporated
into a visually guided manipulation framework to perform
high-precision autonomous surgical tasks.

Index Terms— da Vinci research kit (dVRK), medical robots
and systems, surgical robotics: laparoscopy.

I. INTRODUCTION

DUE to the nature of the master–slave teleoperation
required to operate systems, such as the da Vinci

robotic surgical system (Intuitive Surgical, Inc., Sunnyvale,
CA, USA), robotic minimally invasive surgery (RMIS) usually
results in longer operation times, and the learning curve is
steeper than other minimally invasive surgical techniques [1].
In addition, the narrow laparoscopic camera view and limited
workspace can make low-level tasks challenging and time-
consuming. In order to reduce operation time and enhance sur-
geon performance, autonomous robotic surgical assistants [2]
have been proposed to perform low-level surgical manipulation
tasks, such as suturing [3]–[8], debridement [9], dissection,
and retraction [10].

In order to perform these automated tasks with precision,
it is necessary to know the transformation between the base
frame of the robot manipulators (“hands”) and the stereo
endoscopic camera (“eye”). Once the hand-eye transforma-
tion is known, a detected object in the camera coordinate
system can be located in the manipulator coordinate system,
and the necessary motions to manipulate the object can be
performed autonomously. Unfortunately, the surgical environ-
ment possesses several undesirable attributes that preclude
traditional calibration strategies—most prominently, external
objects, such as calibration grids, cannot be safely introduced
into the patient, and the camera and patient-side manipulator
arms (PSMs) are repositioned with respect to each other
multiple times during an operation. This last condition further
demands that calibration to be performed or updated “online”
in a time-efficient manner.

This article focuses on computing the transformation
between the endoscopic camera and the robotic manipulators
in real time using an external tracking system. The presented
work was performed using a Polaris Vicra optical tracking
system (Northern Digital Inc., Waterloo, ON, Canada) and da
Vinci robotic surgery system, but the methods developed can
be used to calibrate any remote-center-of-motion (RCM)-based
robot with any tracking system. In order to reduce the accu-
mulation of error, this article proposes a procedure that is
divided into systematic steps instead of finding a hand-eye
transformation directly. Most of the time-consuming elements
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of the calibration are performed offline in a manner that allows
them to be retained between movements and even between
surgical procedures, leaving the remainder able to be computed
in real time without sacrificing precision. This key idea enables
the intraoperative updates of the hand-eye transformation to be
performed instantly.

This article is organized as follows. Section II dis-
cusses related studies on robot-camera (hand-eye) calibra-
tion. The experimental hardware is described in Section III.
In Section IV, the problem formulation and proposed calibra-
tion methods are described. The details of the hardware-based
validation tests and the validation results are presented in
Section V, followed by the conclusions in Section VI.

II. RELATED STUDIES

The problem of hand-eye calibration in robotic systems
has been well studied by many researchers using vari-
ous techniques. Early studies described the problem by
separating the transformation into translation and rotation
components [11]–[15]. Others then argued that the separation
implies that the rotation component has nothing to do with
the translation component, which is not a viable assumption,
and attempted to find a solution simultaneously [16]–[19]. The
problem with this method was that orientation errors were
propagating into positional errors. To reduce the rotational
error propagation, researchers then proposed to solve the prob-
lem iteratively [20]–[22]. The extension of the robot-world
calibration problem to hand-eye calibration has also been
studied [23]–[25].

Wang et al. [26] proposed a method for hand-eye calibration
of RCM-based robots, such as the da Vinci robotic surgery sys-
tem. The translation part of the calibration matrix is computed
by moving the endoscope to at least two different positions,
and the orientation is obtained by constructing an optimization
problem with different images of the robotic manipulator. The
average translational error is reported as 16.08 mm.

Zhang et al. [27] proposed to solve the calibration problem
for RMIS systems using an internal dot pattern attached to
the tip of the manipulator. The hand-eye relationship was
computed iteratively, and the convergence of this iterative
computation was proven. While the resulting transforms were
found to be self-consistent over multiple end-effector posi-
tions, they were not compared to ground truth.

D’Ettorre et al. [28] developed a vision-guided method for
automatically grasping the suturing needle. The hand-eye cali-
bration is identified by establishing 3-D point correspondences
between the camera and the robot tooltip while positioning the
tip at corners of a calibration grid and detecting these corners
from the camera.

Pachtrachai et al. [29] developed a method without a cali-
bration object for RMIS systems. The surgical manipulator’s
pose is estimated relative to the endoscopic camera using
the 3-D instrument tracking method described in [30]. The
minimum instrument tracking error was reported as about
20 mm, while the manipulator was in motion.

Seita et al. [31] studied the problem by employing a
two-phase calibration procedure. In the first phase, the tra-
jectories in the workspace are automatically explored with

random targets, using red tape tied to the end-effector to
visually track the location. A deep neural network (DNN)
was trained in the obtained data. In the second phase of the
procedure, the manipulator’s end-effector was sent to a target
on a printed calibration grid. The error of the end-effector was
corrected by a human expert. A random forest (RF) was then
trained on the collected data to predict the residual error.

These previous studies in the literature on hand-eye cali-
bration showed great promise. However, achieved precision is
either insufficient or requires an external pattern in order to
perform low-level subtasks autonomously. Furthermore, some
of these studies rely on simplifying assumptions, such as artifi-
cially coloring the end effectors; require vision-based tracking
algorithms that are not computationally feasible; or employ
subjective human expertise during algorithm training—none
of which are applicable to practical RMIS scenarios.

Previous studies tried to solve the hand-eye calibration
problem directly to find the transformation between the camera
and the manipulator. In contrast, the presented study aims
to perform the calibration procedure in a divide-and-conquer
fashion, performing the majority of the calibration proce-
dure preoperatively using an external optical sensor (which
is already commonly used in operating rooms [32]). These
components of the calibration are not affected by surgical
instrument change or movement during the procedure. Once
the relative transformations of the endoscopic camera and
the manipulator RCM point to fixed passive markers are
computed preoperatively, the remainder of the calibration
procedure requires only a single snapshot of the relative
marker transformations—this is very quick, operating-room
friendly, and compatible with all RCM-based manipulators.
This systematic breakdown also reduces errors in kinematic
parameters, such as link and joint angle offsets.

To the best of our knowledge, this article is the only
method currently available, which is applicable to a realistic
laparoscopic surgical scenario, since it is capable of recovering
hand-eye calibration in real time following the movement
of the robot’s passive joints. The presented method high-
lights and accommodates significant deviations from the ide-
alized and experimentally identified Denavit–Hartenberg (DH)
parameters for the physical da Vinci PSM. This kinematic
intrinsic identification method can be used to characterize
and correct any RCM-based robot. In addition, the open-loop
point-reaching accuracy results achieved in this article are
equivalent to or better than earlier results reported in the
literature. Specifically, the achieved open-loop point-reaching
accuracy is equivalent to the accuracy of earlier studies that
rely on closed-loop visual servocontrol and significantly better
than methods that reported open-loop reaching accuracy.

III. HARDWARE DESCRIPTION

A. Da Vinci Research Kit

In order to control the da Vinci surgical robotic system in
an automated manner, we employed the da Vinci Research
Kit (dVRK) developed by Johns Hopkins University and
the Worcester Polytechnic Institute (WPI) [33] (see Fig. 1).
The dVRK acts as a substitute for the teleoperation master
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Fig. 1. da Vinci surgical robotic system with the dVRK.

Fig. 2. (a) Polaris Vicra optical tracking system. (b) Passive markers.
(c) Custom-built adapter.

station via a ROS interface that can be controlled from
any desktop computer [33]. Forward and inverse kinematics
allow this joint-level control to be leveraged into workspace
(3-D Cartesian) control of the robot in the PSM base frame.
Multiple PSMs can be managed in parallel with the device.
In this article, only a single manipulator was employed;
however, the procedure can be extended to calibrate multiple
manipulators at the same time or in sequence.

B. Polaris Optical Tracker

In order to identify kinematic calibration parameters,
an optical tracker system—the NDI Polaris Vicra [34]—is
employed as an external sensor. The Polaris Vicra can measure
the position and orientation of passive markers composed
of retroreflective spheres in specific and unique geomet-
ric shapes [34]. The unique marker geometry allows the
system to track multiple markers simultaneously, and the
ROS-compatible wrapper package enables a desktop computer
to read the marker position and orientation at 20 Hz. The
accuracy of the system is reported as 0.25-mm rms within its
operating volume [34]. The system is already approved for
and commonly used in surgical operations, most prominently
in neurosurgery [32].

Our calibration setup requires two permanent passive
markers—one affixed to the base of the PSM and the other
affixed to the camera, both external to the patient. In order
to perform the offline stages of the calibration, we have also
designed a removable adapter that is attached to the gripper
and able to hold the third marker (see Fig. 2) and a machined
calibration board with a fourth marker embedded in its surface
(see Fig. 3). Neither of these devices needs to be present
during the surgical procedure, as they are only used during
the preoperative calibration phase.

IV. CALIBRATION PROCEDURE

The hand-eye calibration procedure finds the transformation
between the camera and the manipulators in three independent
steps by introducing an external optical sensor. In the first step
of the procedure, which is explained in detail in Section IV-B,

a fixed marker is attached to the camera, and the transforma-
tion between the camera and the marker is computed via a
custom-built calibration board using the frame assignments
shown in Section IV-A. The second step of the procedure
is achieved by attaching an optical marker onto the robot
manipulator base, and the transformation between the robot
base and the marker is calculated using the method detailed in
Section IV-C. In the third step, the transformation between the
fixed markers is computed using the optical tracking system.
The final hand-eye calibration is calculated by using these
three intermediate transformations.

A. Frames and Transformations of Interest

1) C is the camera optical frame or “eye” frame. Pixel
locations deprojected from image space to 3-D Cartesian
space using the endoscope’s binocular vision are natively
expressed in this frame.

2) Mc is the frame of a Polaris marker rigidly affixed to
the endoscopic camera pole.

3) P is the PSM base frame, “portal” frame, or “hand”
frame. It is the origin of the workspace of the PSM,
meaning that forward and inverse kinematics operate on
points expressed in this frame.

4) M p is the frame of a Polaris marker rigidly affixed to
the PSM base.

5) D is the frame of a camera calibration grid freely
movable within the robot workspace.

6) Md is the frame of a Polaris marker rigidly affixed to
that calibration grid.

7) Mt is the frame of a Polaris marker rigidly affixed to
the PSM tooltip.

It should be noted that the Polaris sensor reports the 6-DOF
location of a marker (position and orientation) in a Cartesian
frame N internal to the device—more precisely, a transform
between the origin of N and the origin of the marker. This
location will change if the Polaris is rotated or moved and has
no direct physical relevance to the da Vinci unit or objects
within its workspace. Given any two reported locations X and
Y from the same tracker position, it is possible to compute a
transform gXY between them that is independent of the tracker
and thus persistent following its removal:

X = gN X , Y = gNY

∴ [gN X ]−1 · gNY = gX N · gNY = gXY . (1)

This method is used to compute several of the transforms
(see Fig. 4) described in the following and can be performed
using a single Polaris reading in real time.

1) gMcC is the transform between the camera and the
marker affixed to it, which also remains constant when
the camera is moved. The determination of this trans-
form is discussed in Section IV-B.

2) gM p P is the transform between the PSM base and the
marker affixed to it, which remains constant even when
the PSM is moved. The determination of this transform
is discussed in Section IV-C.

3) gM p Mc
is the transform between Mp and Mc . It changes

whenever the PSM or camera is moved but can be
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Fig. 3. Custom-built board with known transformation between tracking
marker and grid.

Fig. 4. Relevant frames and transformations for the da Vinci surgical system.

redetermined in real-time using only a single Polaris
reading of both markers, as per (1).

4) gdc is the camera-to-calibration-grid transform. It cha-
nges based on the location of the calibration grid and
does not exist at all when (as in surgery) the grid is not
present. It is discussed further in Section IV-B.

5) gMd D is the transform between the calibration grid
and the marker affixed to it. The physical structure
holding both components is CNC-machined so that this
transform is constant and known to high precision

gMd D =

⎡
⎢⎢⎣

0 0 −1 0
−1 0 0 −80 mm
0 1 0 0
0 0 0 1.

⎤
⎥⎥⎦ . (2)

6) gMd Mc
is the transform between the calibration grid and

camera markers. It is discussed further in Section IV-B.
7) g PC is the hand-eye transform of interest. Using this

transform, a physical point identified in C can be trans-
formed into P and inverse kinematics employed to make
the da Vinci tool travel to that point. Once gMp Mc , gMp P ,
and gMcC are known

gPC = [gMp P ]−1 · gMp Mc · gMcC . (3)

B. Camera to Polaris Registration

One of the preoperative calibration procedures involves
finding the transformation between the camera frame C and
the marker frame Mc attached to the camera (see Fig. 5). The
transformation gMcC is computed offline using a custom-built
visual calibration board that includes a tracking marker (see
Fig. 3), which serves as a connection between the camera and
the Polaris tracker. Before hand-eye calibration, the endoscopic

Fig. 5. Camera to Polaris calibration schematic diagram.

Fig. 6. Corners of the board detected in the camera frame.

camera system optical intrinsics are calculated by the ROS
industrial-calibration package [35]. The resulting intrinsics
show a 0.37-pixel reprojection error, which contributes (along
with detection errors impossible to directly measure) to a
total error in locating the positions of detected objects, which
averages 0.49 mm and has a maximum of 2.8 mm [36].

First, the board is positioned such that it is visible to both the
Polaris tracker and the endoscopic camera. Using the images
from the endoscope, the grid corner locations are then detected
in the camera frame (see Fig. 6) using a corner detection
algorithm [37]. The corner locations can be used as inputs
to the OpenCV solvePnP optimization algorithm [37] to com-
pute gCD using the camera’s intrinsic parameters, the corner
locations of the grid in camera frame (C), and corresponding
corner locations in the grid frame (D). Since gMd D is known
and a single Polaris reading gives gMd Mc with (4), gMcC can
be computed as follows:

gMcC = [gMd Mc ]−1 · gMd D · gDC . (4)

Since the corner detection and the Polaris readings might
be affected by the board position and lighting conditions,
500 data samples using different positions and orientations of
the board are collected. The developed software has the ability
to automatically collect data, while the board is moved under
the camera and tracker. After collecting the data, a constrained
nonlinear optimization problem is constructed as

gMcC = argmingMcC

n∑
i=0

error
(
gMcC, gi

DC, gi
MdMc

)

gi
x = gMcC · [gi

DC]−1 · [gMd D]−1 · gi
Md Mc

=
(

Rx px

000 1

)

error = ||px || + α ·
∣∣∣∣arccos

(
Trace(Rx) − 1

2

)∣∣∣∣ (5)
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Fig. 7. Robot illustration with base frame and DH 0, 1, and 2 frames. The
kinematics of the PSM is represented by the DH convention. The first three
frames are ideally intersecting at the origin of the base frame and are mutually
perpendicular.

where n is the size of the data pool (500 data sets were enough
to cover the region in our case) and α is a scale factor identified
empirically. The error is the weighted sum of the translational
and rotational error, where the rotational error is given by
the angle of the axis-angle representation. This optimization
problem is solved using MATLAB’s fmincon utility using the
default (interior-point) optimization algorithm with no linear
constraints or region.

gMcC does not depend on the specific location of the
calibration board. Once it is established, it remains valid
even if the joints of the endoscope-holding arm are moved.
Therefore, the procedures described earlier can be done offline
and preserved across multiple camera positions and multiple
surgeries.

C. PSM Kinematic Model and PSM to Polaris Registration

Joint axes 1–3 (ω1–ω3) of the da Vinci PSM are designed
to intersect at a single point (namely, RCM) and be mutually
perpendicular, defining the PSM base frame P’s position and
orientation (see Fig. 7). On a physical robot, this may not be
the case because of imperfections in the mechanism, making
the definition of P and the subsequent kinematic calculations
inaccurate. In order to improve the accuracy of the PSM kine-
matics and the PSM to Polaris registration, an appropriately
defined DH parameterization of the PSM kinematics, taking
into account these imperfections, is identified as part of the
process.

The PSM to the Polaris registration and the identification
of the PSM kinematic parameters are performed with the help
of a passive marker Mt affixed to the PSM end-effector (see
Fig. 2) and tracked by the Polaris sensor.

In order to determine ω1, joint J1 is swept from its minimum
to maximum value while freezing joints J2–J7 at 0 displace-
ment. The passive marker affixed to the PSM end-effector
will describe an arc in three-space, which can be fit by a
least-squares method to a full circle [38]. ω1 passes through the
center of the circle and is parallel to the normal vector of the
plane containing it, allowing its position and orientation to be
calculated in N . Analogously, sweeping J2 while holding J1
and the other joints at 0 displacement allows us to determine
ω2 (see Fig. 8).

To determine ω3, J1 and J2 are held at 0 displacement, and
J3 is moved to four different positions. At each, wrist joints

Fig. 8. Left: point cloud containing marker positions obtained by “circle-
drawing” and “sphere-drawing” motions. Right: fitted arcs and sphere centers.

TABLE I

IDEAL AND REALISTIC DH FRAME PARAMETERS OF THE PSM

J4 and J5 are swept from their minimum to maximum values,
causing the tip of the gripper and the marker affixed thereto
to describe a small (≈40-mm diameter) sphere. The origin
of each sphere is then identified using a similar least-squares
fitting algorithm [38]. A line passing through all four sphere
center points can then be determined by another least-squares
fit [38], which describes ω3 in the Polaris frame (see Fig. 8).

Based on the aforementioned calculations, it was confirmed
that ω1, ω2, and ω3, indeed, are not perpendicular and do
not intersect. The difference between the idealized and exper-
imentally identified DH parameters for the physical da Vinci
PSM used in the experiment is shown pictorially in Fig. 9 and
numerically in Table I.

Once the position and orientation of the PSM base frame
relative to the Polaris frame, gNP, are known, (1) can be used
to determine gMp P using gNMp. Similar to gMcC , the end result
of this process does not depend on the position of the Polaris
unit and remains valid even if the joints of the PSM-holding
arm are moved, or the tip marker Mt removed. Therefore,
the procedures described can be done offline and preserved
across multiple PSM positions and multiple surgeries.

V. EXPERIMENTAL VALIDATION

A. Experiment Design

The accuracy of the calibration method can be evaluated by
locating a point-of-interest (POI) or a set of POIs through the
endoscopic camera and then commanding the da Vinci robot
to move its PSM to those points (experimental setup is shown
in Fig. 10). A consistent offset between the physical POIs Ri

and the end-effector point-of-arrival Qi represents an error in
the calibration. Ri is generated from the inner intersections of
a 5 × 7 gray-scale checkerboard with 15-mm squares, which
are located in the camera space using [37]. As these points
correspond to the physical features of an object, it is possible
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Fig. 9. Idealized (right) and real (left) axes of joints 1–3. Frames 0, 1, and 2
are intersecting at the origin of base frame under the ideal assumption, which
conflicts with the reality. The difference increases the cumulative positioning
error significantly.

Fig. 10. Experimental test setup. (a) Board is placed under the endoscope
to detect the corners. Carbon paper is placed on the board to record the
X- and Y -error components. (b) Conductive foil is then placed on top to
record the Z -axis error. (c) Manipulator is set to touch to the board corners.

to precisely measure the distance εi between each Ri and the
resulting Qi = gPC · Ri as X , Y , and Z components in an
arbitrary 3-D frame (in this case, the board frame D)

εi = ||Ri − Qi || =
√

ε2
Xi + ε2

Y i + ε2
Zi . (6)

In order to determine these components, after the POIs are
recorded, but before the robot moves, the calibration grid is
covered with a sheet of carbon paper backed by conductive
foil (with a total thickness less than 0.1 mm). The foil is
connected to the positive terminal of a computerized voltmeter,
the conductive metal tip of the PSM is wired to a +5-V dc
power source, and the voltmeter and power source share a
common ground. Thus, when the PSM tip makes physical
contact with the foil (and, by extension, the checkerboard inter-
section beneath), the voltage reported by the meter software
jumps from 0 V to approximately +5 V.

For each Qi , the system is commanded to move first to a
position 5 mm above the calculated Z -value and then descend
with ±0.02-mm increments until an increase in voltage is
registered—this means that the PSM tip is in contact with the
grid and, therefore, at the true physical Z -coordinate of Ri .
RZi − QZi = εZi . In addition, when the tip applies pressure
to the foil, a dark mark is transferred from the carbon paper
beneath it to the checkerboard. The displacement from this
mark to the corresponding corner of the board is measured
using calipers to determine εXi and εY i . Each test involved
15 points, and the tests were repeated 13 times with the board
at different locations under the camera field of view, for a total
data set of 195 unique points.

In order to measure calibration performance in terms of
rotation, the robot was commanded to approach identified

TABLE II

DESCRIPTIVE STATISTICS OF COMPONENT AND TOTAL
ERRORS (mm AND ◦)

checkerboard points with the gripper held at various angles
(90◦, 60◦, and 30◦). Then the angle between the robot grip-
pers and the board surface was measured manually with a
digital angle gauge (Pittsburgh Digital Angle Gauge, with
accuracy = ±0.3◦ as reported in the tool user manual). The
difference between the commanded angle and the physically
measured angle was recorded as the rotational error. Each
angle was tested with 100 trials (total of 300 unique posi-
tions). The experimental procedure is summarized in the video
attachments.

In addition to the quantitative measurements, the quality of
the calibration was evaluated in an application-relevant task,
namely, by grasping a surgical needle. The needle was placed
randomly into the camera view (ensuring that the needle is
reachable by the robot end-effector). A flat white surface,
a flat printout of a photographed surgical procedure, a soft flat
pad, and a suturing training pad were used as backgrounds.
The location of the needle is determined by a needle tracking
algorithm [3] in the camera frame. By using the calibration,
coordinates of the needle are then transformed into the robot
base frame, and the robot is commanded to grasp the needle.
A total of 20 needle-grasping trials were performed.

The quality of the intraoperative updates of the hand-eye
calibration after the motion of the camera, and the robot
base was also experimentally evaluated. Specifically, after
the calibration procedure is performed and the camera-robot
calibration was obtained, the passive joints of the robot arm
were manually moved to several new configurations. At each
configuration, the optical tracker was used to obtain the
transformation between the fixed markers attached to the
camera and the robot base frames, and the new camera-robot
calibration was obtained by updating only the affixed marker
transformation. A total of five different configurations obtained
by manually moving the passive joints were tested, where each
configuration was evaluated by performing five sets of POI
positioning tests (total of 375 unique points) and five visually
guided needle grasps (totaling 25 trials).

B. Results

Table II shows a statistical breakdown of the error across
all 195 points. εXi and εY i are measured to a resolution of
±0.1 mm using calipers; εZi was measured using the descent
method described earlier to a resolution of ±0.02 mm. Figs. 11
and 12 show the distribution of the error values. Table II also
shows the rotational error breakdown εθ . Out of 300 trials,
the mean rotational error is calculated as 3.2◦ with the standard
deviation of 3.4◦ and a maximum of 6◦.

The needle-grasping experiments were performed a total
of 20 times. The robot successfully grasped the needle
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Fig. 11. Euclidean distance and component-axis errors plotted with respect
to point number.

Fig. 12. Histogram of the Euclidean errors before and after passive joint
motions.

in 18 cases and failed in two cases. In the failure cases,
the robot grippers were very close to the needle. In both
cases, the gripper made contact with the needle. The video
attachment contains several successful needle grasps under
varying background surfaces as well as the failure cases.

The reliability of the calibration after the movement of
the passive joints was tested with a total of five differ-
ent configurations with 25 needle-grasping experiments (five
experiments for each configuration). After the manual motion
on the passive joints, using the updated calibration, the robot
successfully grasped the needle in 21 cases and failed in four
cases (the gripper hit the needle in two cases and missed the
needle in two cases). The measured POI positioning errors
(cumulative for the five configurations) were 2.0 mm (rms),
0.7 mm (std. dev.), and 4.0 mm (max).

The calibration procedure described in this article takes
about 40 min. Specifically, the part described in Section IV-B
takes ∼5 min (data collection 4 min and processing 1 min) and
in Section IV-C takes ∼35 min (data collection 34 min and
processing 1 min). A video of the robot moving to different
POIs after the movement of the passive joints and calibration
update is included in the video attachment.

VI. CONCLUSION

In this article, a method for hand-eye calibration of the
da Vinci robotic surgery system is presented. Although this
article specifically focuses on the calibration of the da Vinci
system, the proposed method is broadly applicable to any

RCM-based robotic mechanism, such as the Raven surgical
robotic system [39].

Instead of trying to directly find a transformation between
the camera and the manipulators, the calibration procedure is
performed in three independent steps to reduce the cumulative
error and to allow the calibration procedure to be partitioned
into preoperative (offline) and intraoperative (online) parts.
An external optical sensor—the NDI Polaris Vicra—is used
to identify the kinematic calibration parameters during the
calibration procedure. In the first step of the procedure, a fixed
marker is attached to the camera, and the transformation
between the camera and the marker via a custom-built calibra-
tion board is computed. In the second step of the procedure,
an optical marker is attached to the robot manipulator base,
and the transformation between the robot base and the marker
is calculated. These two steps can be preoperatively performed
offline, and the transforms discovered persist between surgical
operations. In the third step, the Polaris Vicra is used to
identify the transformation between the affixed markers to
find the final calibration. Each time the passive joints of
the manipulator or the endoscope move, all that needs to
be done is to refresh the transformation between the fixed
markers, enabling the quick, online intraoperative update of
the hand-eye transformation.

The resulting calibration methodology produced visually
guided end-effector motions with an rms positioning error
of 2.1 mm and a maximum error of 4.3 mm. The rotation
accuracy of the method is calculated as 3.2◦ with the stan-
dard deviation of 3.4◦ and a maximum of 6◦. The resulting
accuracy of the system after calibration is better than the
earlier hand-eye calibration results reported in the literature
for the dVRK. The quality of the calibration is evaluated in
an application relevant task, namely, by grasping a surgical
needle (45 experiments and 39 successful needle grasps).
This functional validation results also demonstrated that the
achieved calibration accuracy is sufficient for basic surgical
manipulation tasks, such as needle grasping. In addition,
following a one-time offline calibration step, the intraoperative
update of the calibration can be performed in the order of a
few seconds in real time without human intervention, excessive
computational resources, or the introduction of nonsurgical
equipment into the operating area. Although the relatively
small visual range of the Polaris Vicra limits the workspace
in which calibration is possible, this limitation could easily
be rectified by substituting another optical tracker, such as the
Polaris Spectra or Vega, with a larger workspace. Nonoptical
trackers can also be employed [40]. Since the calibration
procedure depends on the external tracking equipment, the cost
should be taken into account although it is typically a small
fraction of the overall system cost.
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